Auszug |
---|
a versatile package to perform molecular dynamics for systems with hundreds to millions of particles. |
Description
GROMACS is a versatile package to perform molecular dynamics for systems with hundreds to millions of particles. It is primarily designed for biochemical molecules like proteins, lipids and nucleic acids that have a lot of complicated bonded interactions, but since GROMACS is extremely fast at calculating the nonbonded interactions (that usually dominate simulations) many groups are also using it for research on non-biological systems, e.g. polymers and fluid dynamics.
...
- GROMACS provides extremely high performance compared to all other programs.
- GROMACS can make simultaneous use of both CPU and GPU available in a system. There are options to statically and dynamically balance the load between the different resources.
- GROMACS is user-friendly, with topologies and parameter files written in clear text format.
- Both run input files and trajectories are independent of hardware endian-ness, and can thus be read by any version GROMACS.
- GROMACS comes with a large selection of flexible tools for trajectory analysis.
- GROMACS can be run in parallel, using the standard MPI communication protocol.
- GROMACS contains several state-of-the-art algorithms.
- GROMACS is Free Software, available under the GNU Lesser General Public License (LGPL).
Weaknesses
- GROMACS does not do to much further analysis to get very high simulation speed.
- Sometimes it is challenging to get non-standard information about the simulated system.
- Different versions sometimes have differences in default parameters/methods. Reproducing older version simulations with a newer version can be difficult.
- Additional tools and utilities provided by GROMACS are sometimes not the top quality.
...
More information about performance of the simulations and "how to imporve perfomance" can be find here.
Useful links
- GROMACS Manuals and documentation
- GROMACS Community Forums
- Useful MD Tutorials for GROMACS
- VMD Visual Molecular Dynamics