Zum Ende der Metadaten springen
Zum Anfang der Metadaten

Sie zeigen eine alte Version dieser Seite an. Zeigen Sie die aktuelle Version an.

Unterschiede anzeigen Seitenhistorie anzeigen

« Vorherige Version anzeigen Version 13 Aktuelle »

Popular tools such as Pytorch, TensorFlow, and JAX can be used with the Intel distribution for Python (use the offline installer on the login nodes) together with certain special framework-specific extensions. Environments can be separately prepared for each framework below for use with Intel GPUs. Note that the module intel/2024.0.0 (under sw.pvc) must be loaded for these frameworks to be installed or run properly.

We also offer a standalone module (intel_AI_tools/2024.0.0) that loads a conda installation with the following pre-installed, Intel GPU/XPU-ready environments:

  • intel_pytorch_2.1.0a0

  • intel_tensorflow_2.14.0

  • intel_jax_0.4.20

Pytorch

Load the Intel OneAPI module and create a new conda environment within your Intel python distribution:

module load intel/2024.0.0

conda create -n intel_pytorch_gpu python=3.9
conda activate intel_pytorch_gpu

Once the new environment has been activated, the following commands install Pytorch:

python -m pip install torch==2.1.0a0 torchvision==0.16.0a0 torchaudio==2.1.0a0 intel-extension-for-pytorch==2.1.10+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

This installs Pytorch together with Intel extension for Pytorch necessary to run non-CUDA operations on Intel GPUs. On a compute node, the presence of GPUs can be assessed:

Python 3.9.18 (tags/v3.9.18-26-g6b320c3b2f6-dirty:6b320c3b2f6, Sep 28 2023, 00:35:27)
[GCC 13.2.0] :: Intel Corporation on linux
(null)Type "help", "copyright", "credits" or "license" for more information.
Intel(R) Distribution for Python is brought to you by Intel Corporation.
Please check out: https://software.intel.com/en-us/python-distribution
>>> import torch
>>> import intel_extension_for_pytorch as ipex
My guessed rank = 0
>>> [print(f'[{i}]: {torch.xpu.get_device_properties(i)}') for i in range(torch.xpu.device_count())]
[0]: _DeviceProperties(name='Intel(R) Data Center GPU Max 1550', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=1, total_memory=65536MB, max_compute_units=512, gpu_eu_count=512)
[1]: _DeviceProperties(name='Intel(R) Data Center GPU Max 1550', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=1, total_memory=65536MB, max_compute_units=512, gpu_eu_count=512)
[2]: _DeviceProperties(name='Intel(R) Data Center GPU Max 1550', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=1, total_memory=65536MB, max_compute_units=512, gpu_eu_count=512)
[3]: _DeviceProperties(name='Intel(R) Data Center GPU Max 1550', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=1, total_memory=65536MB, max_compute_units=512, gpu_eu_count=512)
[4]: _DeviceProperties(name='Intel(R) Data Center GPU Max 1550', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=1, total_memory=65536MB, max_compute_units=512, gpu_eu_count=512)
[5]: _DeviceProperties(name='Intel(R) Data Center GPU Max 1550', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=1, total_memory=65536MB, max_compute_units=512, gpu_eu_count=512)
[6]: _DeviceProperties(name='Intel(R) Data Center GPU Max 1550', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=1, total_memory=65536MB, max_compute_units=512, gpu_eu_count=512)
[7]: _DeviceProperties(name='Intel(R) Data Center GPU Max 1550', platform_name='Intel(R) Level-Zero', dev_type='gpu, support_fp64=1, total_memory=65536MB, max_compute_units=512, gpu_eu_count=512)
[None, None, None, None, None, None, None, None]

Examples of how to use the Intel extension for Pytorch can be found here.

TensorFlow

Similar to Pytorch, an Intel extension for TensorFlow exists. To prepare a TensorFlow environment for use with Intel GPUs, first create a new conda environment:

module load intel/2024.0.0

conda create -n intel_tensorflow_gpu python=3.9
conda activate intel_tensorflow_gpu

Once the new environment has been activated, the following commands install TensorFlow:

pip install tensorflow==2.14.0
pip install --upgrade intel-extension-for-tensorflow[xpu]

This installs TensorFlow together with it's Intel extension necessary to run non-CUDA operations on Intel GPUs. On a compute node, the presence of GPUs can be assessed:

Python 3.9.18 (tags/v3.9.18-26-g6b320c3b2f6-dirty:6b320c3b2f6, Sep 28 2023, 00:35:27)
[GCC 13.2.0] :: Intel Corporation on linux
(null)Type "help", "copyright", "credits" or "license" for more information.
Intel(R) Distribution for Python is brought to you by Intel Corporation.
Please check out: https://software.intel.com/en-us/python-distribution
>>> import tensorflow
2024-02-09 14:26:07.737940: I tensorflow/core/util/port.cc:111] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-02-09 14:26:07.740082: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-02-09 14:26:07.764245: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-02-09 14:26:07.764268: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-02-09 14:26:07.764290: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-02-09 14:26:07.769201: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-02-09 14:26:07.769345: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 AVX_VNNI AMX_TILE AMX_INT8 AMX_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-02-09 14:26:08.459403: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2024-02-09 14:26:09.416471: I itex/core/wrapper/itex_gpu_wrapper.cc:35] Intel Extension for Tensorflow* GPU backend is loaded.
2024-02-09 14:26:09.457055: I itex/core/wrapper/itex_cpu_wrapper.cc:60] Intel Extension for Tensorflow* AVX512 CPU backend is loaded.
2024-02-09 14:26:09.551955: I itex/core/devices/gpu/itex_gpu_runtime.cc:129] Selected platform: Intel(R) Level-Zero
2024-02-09 14:26:09.552267: I itex/core/devices/gpu/itex_gpu_runtime.cc:154] number of sub-devices is zero, expose root device.
2024-02-09 14:26:09.552272: I itex/core/devices/gpu/itex_gpu_runtime.cc:154] number of sub-devices is zero, expose root device.
2024-02-09 14:26:09.552276: I itex/core/devices/gpu/itex_gpu_runtime.cc:154] number of sub-devices is zero, expose root device.
2024-02-09 14:26:09.552279: I itex/core/devices/gpu/itex_gpu_runtime.cc:154] number of sub-devices is zero, expose root device.
2024-02-09 14:26:09.552283: I itex/core/devices/gpu/itex_gpu_runtime.cc:154] number of sub-devices is zero, expose root device.
2024-02-09 14:26:09.552286: I itex/core/devices/gpu/itex_gpu_runtime.cc:154] number of sub-devices is zero, expose root device.
2024-02-09 14:26:09.552290: I itex/core/devices/gpu/itex_gpu_runtime.cc:154] number of sub-devices is zero, expose root device.
2024-02-09 14:26:09.552293: I itex/core/devices/gpu/itex_gpu_runtime.cc:154] number of sub-devices is zero, expose root device.

Examples of how to use the Intel extension for TensorFlow can be found here.

JAX

Intel XPU support is still experimental for JAX.

Like Pytorch and TensorFlow, JAX also has an extension via OpenXLA. To prepare a JAX environment for use with Intel GPUs, first create a new conda environment:

module load intel/2024.0.0

conda create -n intel_jax_gpu python=3.9
conda activate intel_jax_gpu

Once the environment is activated, the following commands install JAX

pip install jax==0.4.20 jaxlib==0.4.20
pip install --upgrade intel-extension-for-openxla

This installs JAX together with its Intel extension necessary to run non-CUDA operations on Intel GPUs. On a compute node, the presence of GPUs can be assessed:

Python 3.9.18 (main, Sep 11 2023, 13:41:44)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import jax
>>> print("jax.local_devices(): ", jax.local_devices())
Platform 'xpu' is experimental and not all JAX functionality may be correctly supported!
jax.local_devices():  [xpu(id=0), xpu(id=1), xpu(id=2), xpu(id=3), xpu(id=4), xpu(id=5), xpu(id=6), xpu(id=7)]

Examples for using the Intel extension for JAX can be found here.

Distributed Training

multigpu and multinode jobs can be executed using the following strategy in a job submission script:

module load intel/2024.0.0
module load impi

export CCL_ROOT=/sw/compiler/intel/oneapi/ccl/2021.12
export LD_LIBRARY_PATH=$I_MPI_ROOT/lib:$LD_LIBRARY_PATH
hnode=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$(scontrol getaddrs $hnode | cut -d' ' -f 2 | cut -d':' -f 1)
export MASTER_PORT=29500

It is advantageous to define the GPU tile usage (each Intel Max 1550 has two compute “tiles”) using affinity masks, wherein the format GPU_ID.TILE_ID (zero-base index) specifies which GPU(s) and tile(s) to use. Eg, two use two GPUs and four tiles, one can specify:

export ZE_FLAT_DEVICE_HIERARCHY=COMPOSITE
export ZE_AFFINITY_MASK=0.0,0.1,1.0,1.1

To use four GPUs and eight tiles, one would specify:

export ZE_FLAT_DEVICE_HIERARCHY=COMPOSITE
export ZE_AFFINITY_MASK=0.0,0.1,1.0,1.1,2.0,2.1,3.0,3.1

These specifications are applied to all nodes of a job. For more information, and alternative modes, please see the intel level-zero documentation.

Intel MPI can then be used to distribute and run your job, eg:

mpirun -np 8 -ppn 8 your_exe your_exe_flags
  • Keine Stichwörter