Zum Ende der Metadaten springen
Zum Anfang der Metadaten

Sie zeigen eine alte Version dieser Seite an. Zeigen Sie die aktuelle Version an.

Unterschiede anzeigen Seitenhistorie anzeigen

Version 1 Nächste Version anzeigen »

General information for system usage you find on Quickstart, especially for the topics

  • login via ssh,
  • file systems.

Software and environment modules

Login and compute nodes of the A100 GPU partition are running under Rocky Linux (currently version 8.6).

Software for the A100 GPU partition provided by NHR@ZIB can be found using the module command, see Quickstart.

Example: Show the currently available software and access compilers
bgnlogin1 ~ $ module avail
...
bgnlogin1 ~ $ module load gcc
...
bgnlogin1 ~ $ module list
Currently Loaded Modulefiles:
 1) HLRNenv   2) sw.a100   3) slurm   4) gcc/11.3.0(default)

(Glühbirne) Please note the presence of the sw.a100 environment module. When loaded, environment modules are shown for software installed for the NVidia A100 GPU partition. This is the default setting on the A100 GPU login and compute nodes.

When compiling applications for the A100 GPU partition, we recommend to use the A100 GPU login nodes or, in case of really demanding compilations and/or need for the presence of CUDA drivers, the use of a A100 GPU compute node via an interactive SLURM job session.

Using the batch system

The GPU nodes are available via partitions of the batch system slurm.

Lise's CPU-only partition and the A100 GPU partition share the same SLURM batch system. The main SLURM partition for the A100 GPU partition has the name "gpu-a100". An example job script is shown below.

GPU job script
#!/bin/bash
#SBATCH --partition=gpu-a100
#SBATCH --nodes=2
#SBATCH --ntasks=8 
#SBATCH --gres=gpu:4

module load openmpi/gcc.11/4.1.4
mpirun ./mycode.bin

GPU-aware MPI

For efficient use of MPI-distributed GPU codes, an GPU/CUDA-aware MPI installation of Open MPI is available in the openmpi/gcc.11/4.1.4 environment module. Open MPI respects the resource requests made to Slurm. Thus, no special arguments are required to mpiexec/run. Nevertheless, please consider and check the correct binding for your application to CPU cores and GPUs. Use --report-bindings of mpiexec/run to check it.

Container

Apptainer is provided as a module and can be used to download, build and run e.g. Nvidia containers:

Apptainer example
bgnlogin1 ~ $ module load apptainer
Module for Apptainer 1.1.6 loaded.

#pulling a tensorflow image from nvcr.io - needs to be compatible to local driver
bgnlogin1 ~ $ apptainer pull tensorflow-22.01-tf2-py3.sif docker://nvcr.io/nvidia/tensorflow:22.01-tf2-py3
...

#example: single node run calling python from the container in interactive job using 4 GPUs
bgnlogin1 ~ $ srun -pgpu-a100 --gres=gpu:4 --nodes=1 --pty --interactive --preserve-env ${SHELL}
...
bgn1003 ~ $ apptainer run --nv tensorflow-22.01-tf2-py3.sif python
...
Python 3.8.10 (default, Nov 26 2021, 20:14:08) 
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> tf.config.list_physical_devices("GPU")
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:2', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:3', device_type='GPU')]

#optional: cleanup apptainer cache
bgnlogin1 ~ $ apptainer cache list
...
bgnlogin1 ~ $ apptainer cache clean



  • Keine Stichwörter