The GPU A100 shares the same Slurm batch system with all partitions of System Lise. The following Slurm partitions are specific for the GPU A100 partition.
Slurm partition | Node number | CPU | Main memory (GB) | GPUs per node | GPU hardware | Walltime (hh:mm:ss) | Description |
---|---|---|---|---|---|---|---|
gpu-a100 | 34 | Ice Lake 8360Y | 1000 | 4 | NVIDIA A100 80GB | 24:00:00 | full node exclusive |
gpu-a100:shared | 5 | 4 | NVIDIA A100 80GB | shared node access, exclusive use of the requested GPUs | |||
gpu-a100:shared:mig | 1 | 28 (4 x 7) | 1 to 28 1g.10gb A100 MIG slices | shared node access, shared GPU devices via Multi Instance GPU. Each of the four GPUs is logically split into usable seven slices with 10 GB of GPU memory associated to each slice | |||
gpu-a100:test | 2 | 4 | NVIDIA A100 80GB | 01:00:00 | nodes reserved for short job tests before scheduling longer jobs with more resources |
See Slurm usage how to pass a 24h walltime limit with job dependencies.
Charge rates for the slurm partitions you find in Accounting.
Assuming a job script
#!/bin/bash #SBATCH --partition=gpu-a100 #SBATCH --nodes=2 #SBATCH --ntasks=8 #SBATCH --gres=gpu:4 module load openmpi/gcc.11/4.1.4 mpirun ./mycode.bin |
you can submit a job to the slurm batch system via the line:
bgnlogin2 $ sbatch example.slurm Submitted batch job 7748544 bgnlogin2 $ squeue -u myaccount ... |
$ srun --nodes=2 --gres=gpu:4 --partition=gpu-a100 example_cmd |
# Note: The two GPUs may be located on different nodes. $ srun --gpus=2 --partition=gpu-a100:shared example_cmd # Note: Two GPUs on the same node. $ srun --nodes=1 --gres=gpu:2 --partition=gpu-a100:shared example_cmd |
$ srun --gpus=1 --partition=gpu-a100:shared:mig example_cmd |